

The Aortha Drape range consists of four materials in different stiffness/softness that are suitable for the production of prosthetic stump sockets.

The technician will choose the most suitable material for the application.

Aortha Drape Stiff

General features:

- Styrene based

- ☑ High impact resistance
- ☑ High fatigue resistance
- ☑ Activation temperature: 170°C

Transparent rigid check sockets

Availability:

(Drape Stiff Prosthetic Squares)

Code	Sheet Size	Thickness	Colour
TA3250	343 x 343mm	8mm	Trans (
TA3251	343 x 343mm	10mm	Trans (
TA3252	343 x 343mm	12mm	Trans (
TA3253	343 x 343mm	15mm	Trans 🔘
TA3256	400 x 400mm	8mm	Trans 🔘
TA3257	400 x 400mm	10mm	Trans (
TA3258	400 x 400mm	12mm	Trans 🔘
TA3259	400 x 400mm	15mm	Trans (

Material Properties: Aortha Drape Stiff

Thermoforming Conditions

Activiation Temperature	170 (340)	°C (°F)
Activation Time - sheet thickness 6mm (15/64")	17	Min
Activation Time - sheet thickness 8mm (5/16")	20	Min
Activation Time - sheet thickness 10mm (3/8")	25	Min
Activation Time - sheet thickness 12mm (1/2")	28	Min
Activation Time - sheet thickness 15mm (19/32")	40	Min
Maximum shrinkage during activation	3.5	%
Maximum thermal shrinkage during cooling	0.8	%
Mechanical Properties at 21°C (70°F)		
Flexural modulus	1150	MPa
Aging: reduction of 🛭 exural modulus after UV-lighting for 210h.	0.7	%
Elastic modulus	1300	МРа
Tensile strength	26	МРа
Strain at break	250	%
Shore D hardness	68	
Impact resisitance	no break	
General Properties		
Density	1.01	g.cm-³
Degraduation temperature	300 (572)	°C (°F)
Colour	Transparent	
Odour	None	
Biocompatible	Yes	

Information:

The Mexural modulus indicates the material stiffness in bending.

Aging: the indicated time (h) denotes the start of yellowing in an aging accelerator. 250h equals 1 year of solar energy in Belgium.

The elastic modulus indicates the material stiffness in tensile.

The tensile strength is the pulling force required to break the material.

The strain at break is the length increase of the material when stretched until failure.

The hardness indicates the resistance of the material to compression.

The impact resistance is the susceptibility of the material to fracture under stresses applied at high speeds.

The degradation temperature is determind in helium.

- Primary Skin Irritation Study
- Delayed Dermal Contact Sensitisation Study
- Cytotoxicity Study

Aortha Drape Soft

General features:

- ☑ Ionomere based
- ☑ Flexible but tough
- ☑ High fatigue resistance
- Mark High mouldability at relatively low activation temperature: 150°C

Transparent rigid check sockets

Availability:

(Drape Soft Prosthetic Squares)

Code	Sheet Size	Thickness	Colour
TA3266	343 x 343mm	4.7mm	Semi-Trans
TA3267	343 x 343mm	6.3mm	Semi-Trans
TA3268	343 x 343mm	8.5mm	Semi-Trans
TA3269	343 x 343mm	11.5mm	Semi-Trans
TA3270	400 x 400mm	4.7mm	Semi-Trans
TA3271	400 x 400mm	6.3mm	Semi-Trans
TA3272	400 x 400mm	8.5mm	Semi-Trans
TA3273	400 x 400mm	11.5mm	Semi-Trans

Material Properties: Aortha Drape Soft

Thermoforming Conditions

Activiation Temperature	150 (300)	°C (°F)
Activation Time - sheet thickness 4.7mm (3/16")	12	Min
Activation Time - sheet thickness 6.3mm (1/4")	16	Min
Activation Time - sheet thickness 8.5mm (11/32")	19	Min
Activation Time - sheet thickness 11.5mm (29/64")	25	Min
Maximum shrinkage during activation	3.2	%
Maximum thermal shrinkage during cooling	4.1	%
Mechanical Properties at 21°C (70°F)		
Flexural modulus	350	MPa
Aging: reduction of Mexural modulus after UV-lighting for 210h.	9.2	%
Elastic modulus	230	MPa
Tensile strength	25	MPa
Strain at break	470	%
Shore D hardness	65	
Impact resisitance	no break	
General Properties		
Density	0.95	g.cm-³
Degraduation temperature	320 (608)	°C (°F)
Colour	Transparent	
Odour	None	
Biocompatible	Yes	

Information:

The Mexural modulus indicates the material stiffness in bending.

Aging: the indicated time (h) denotes the start of yellowing in an aging accelerator. 250h equals 1 year of solar energy in Belgium.

The elastic modulus indicates the material stiffness in tensile.

The tensile strength is the pulling force required to break the material.

The strain at break is the length increase of the material when stretched until failure.

The hardness indicates the resistance of the material to compression.

The impact resistance is the susceptibility of the material to fracture under stresses applied at high speeds.

The degradation temperature is determind in helium.

- Primary Skin Irritation Study
- Delayed Dermal Contact Sensitisation Study
- Cytotoxicity Study

Aortha Drape Extra Soft

General features:

- EVA Based

- ☑ Excellent transparency
- ☑ Superb forming properties
- ☑ Activation temperature: 150°C

Highly Mexible prosthetic

Availability:

(Drape Extra Soft (Beige) Prosthetic Squares)

Code	Sheet Size	Thickness	Colour
TA3300	343 x 343mm	6mm	Beige 🛑
TA3301	343 x 343mm	8mm	Beige 🛑
TA3302	343 x 343mm	10mm	Beige 🛑
TA3303	343 x 343mm	12mm	Beige 🛑
TA3306	400 x 400mm	6mm	Beige 🛑
TA3307	400 x 400mm	8mm	Beige 🛑
TA3308	400 x 400mm	10mm	Beige 🛑
TA3309	400 x 400mm	12mm	Beige 🛑

Availability:

(Drape Extra Soft (Semi-Transparent) Prosthetic Squares)

Code	Sheet Size	Thickness	Colour
TA3276	343 x 343mm	9mm	Semi-Trans
TA3277	343 x 343mm	12mm	Semi-Trans
TA3278	343 x 343mm	15mm	Semi-Trans
TA3280	343 x 343mm	9mm	Semi-Trans
TA3281	400 x 400mm	12mm	Semi-Trans
TA3282	400 x 400mm	15mm	Semi-Trans

Material Properties: Aortha Drape Extra-Soft (Beige)

Thermoforming Conditions

Activiation Temperature	150 (300)	°C (°F)
Activation Time - sheet thickness 6mm (15/64")	11	Min
Activation Time - sheet thickness 8mm (5/16")	17	Min
Activation Time - sheet thickness 10mm (3/8")	18	Min
Activation Time - sheet thickness 12mm (1/2")	21	Min
Maximum shrinkage during activation	3.2	%
Maximum thermal shrinkage during cooling	4.9	%
Mechanical Properties at 21°C (70°F)		
Flexural modulus	75	MPa
Aging: reduction of Mexural modulus after UV-lighting for 210h.	18.3	%
Elastic modulus	75	MPa
Tensile strength	24	MPa
Strain at break	800	%
Shore D hardness	43	
Impact resisitance	no break	
General Properties		
Density	0.94	g.cm-³
Degraduation temperature	200 (392)	°C (°F)
Colour	Beige	
Odour	Acid smell	
Biocompatible	Yes	

Information:

The <code>Mexural</code> modulus indicates the material stiffness in bending.

Aging: the indicated time (h) denotes the start of yellowing in an aging accelerator. 250h equals 1 year of solar energy in Belgium.

The elastic modulus indicates the material stiffness in tensile.

The tensile strength is the pulling force required to break the material.

The strain at break is the length increase of the material when stretched until failure.

The hardness indicates the resistance of the material to compression.

The impact resistance is the susceptibility of the material to fracture under stresses applied at high speeds.

The degradation temperature is determind in helium.

- Primary Skin Irritation Study
- Delayed Dermal Contact Sensitisation Study
- Cytotoxicity Study

Material Properties: Aortha Drape Extra-Soft (Semi-Transparent)

Thermoforming Conditions

•		
Activiation Temperature	150 (300)	°C (°F)
Activation Time - sheet thickness 6mm (15/64")	9	Min
Activation Time - sheet thickness 9mm (23/64")	11	Min
Activation Time - sheet thickness 12mm (1/2")	14	Min
Maximum shrinkage during activation	3.2	%
Maximum thermal shrinkage during cooling	1.6	%
Mechanical Properties at 21°C (70°F)		
Flexural modulus	30	MPa
Aging: reduction of Bexural modulus after UV-lighting for 210h.	11.1	%
Elastic modulus	26	MPa
Tensile strength	10	MPa
Strain at break	800	%
Shore D hardness	33	
Impact resisitance	no break	
General Properties		
Density	0.95	g.cm-³
Degraduation temperature	230 (446)	°C (°F)
Colour	Semi-Transparent	
Odour	Acid smell	
Biocompatible	Yes	

Information:

The Nexural modulus indicates the material stiffness in bending.

Aging: the indicated time (h) denotes the start of yellowing in an aging accelerator. 250h equals 1 year of solar energy in Belgium.

The elastic modulus indicates the material stiffness in tensile.

The tensile strength is the pulling force required to break the material.

The strain at break is the length increase of the material when stretched until failure.

The hardness indicates the resistance of the material to compression.

The impact resistance is the susceptibility of the material to fracture under stresses applied at high speeds.

The degradation temperature is determind in helium.

- Primary Skin Irritation Study
- •Delayed Dermal Contact Sensitisation Study
- Cytotoxicity Study

Aortha Drape Extra Soft -Opaque Silicone

General features:

- EVA based with Silicone additive
- ☑ Opaque in colour
- ☑ Superb forming properties
- ☑ Activation temperature: 150°C

 $\label{thm:lightly bound} \mbox{Highly \boxtimesexible with very smooth touch for prosthetic sockets.}$

Availability:

(Drape Extra Soft (Opaque Silicone) Prosthetic Squares)

Code	Sheet Size	Thickness	Colour
TA3285	343 x 343mm	6mm	Opaque 🔘
TA3286	343 x 343mm	9mm	Opaque 🔘
TA3287	343 x 343mm	12mm	Opaque 🔘
TA3290	400 x 400mm	6mm	Opaque 🔘
TA3291	400 x 400mm	9mm	Opaque 🔘
TA3292	400 x 400mm	12mm	Opaque 🔘

Material Properties: Aortha Drape Extra-Soft Silicone

Thermoforming Conditions

Activiation Temperature	150 (300)	°C (°F)
Activation Time - sheet thickness 6mm (15/64")	9	Min
Activation Time - sheet thickness 9mm (23/64")	11	Min
Activation Time - sheet thickness 12mm (1/2")	14	Min
Maximum shrinkage during activation	3.2	%
Maximum thermal shrinkage during cooling	1.6	%
Mechanical Properties at 21°C (70°F)		
Flexural modulus	30	МРа
Aging: reduction of 🛭 exural modulus after UV-lighting for 210h.	/	%
Elastic modulus	27	МРа
Tensile strength	5.8	МРа
Strain at break	800	%
Shore D hardness	33	
Impact resisitance	no break	
General Properties		
Density	0.95	g.cm-³
Degraduation temperature	230 (446)	°C (°F)
Colour	White	
Odour	None	
Biocompatible	Yes	

Information:

The Nexural modulus indicates the material stiffness in bending.

Aging: the indicated time (h) denotes the start of yellowing in an aging accelerator. 250h equals 1 year of solar energy in Belgium.

The elastic modulus indicates the material stiffness in tensile.

The tensile strength is the pulling force required to break the material.

The strain at break is the length increase of the material when stretched until failure.

The hardness indicates the resistance of the material to compression.

The impact resistance is the susceptibility of the material to fracture under stresses applied at high speeds.

The degradation temperature is determind in helium.

- Primary Skin Irritation Study
- Delayed Dermal Contact Sensitisation Study
- Cytotoxicity Study

Aortha Drape Supra Soft

General features:

- EVA based
- ☑ The softest sheet material available
- Optimum comfort for the patient
- ☑ Extremely high flexibility
- ∨ Very soft surface
- ☑ Activation temperature: 150°C

Applications:

Extremely Mexible prosthetic sockets.

Availability:

(Drape Stiff Prosthetic Squares)

Code	Sheet Size	Thickness	Colour	
TA3312	400 x 400mm	10mm	Semi-Trans	
TA3313	400 x 400mm	12mm	Semi-Trans	
TA3314	400 x 400mm	15mm	Semi-Trans	

Material Properties: Aortha Drape Supra Soft

Thermoforming Conditions

Activiation Temperature	150 (300)	°C (°F)
Activation Time - sheet thickness 10mm (3/8")	14	Min
Activation Time - sheet thickness 12mm (1/2")	18	Min
Activation Time - sheet thickness 15mm (19/32")	22	Min
Maximum shrinkage during activation	3.2	%
Maximum thermal shrinkage during cooling	2.5	%
Mechanical Properties at 21°C (70°F)		
Flexural modulus	20	MPa
Aging: reduction of 🛭 exural modulus after UV-lighting for 210h.	19.8	%
Elastic modulus	19	MPa
Tensile strength	5.3	MPa
Strain at break	> 100	%
Shore D hardness	30	
Impact resisitance	no break	
General Properties		
Density	0.95	g.cm-³
Degraduation temperature	300 (572)	°C (°F)
Colour	Semi-Transparent	
Odour	Acid smell	
Biocompatible	Yes	

Information:

The Nexural modulus indicates the material stiffness in bending.

Aging: the indicated time (h) denotes the start of yellowing in an aging accelerator. 250h equals 1 year of solar energy in Belgium.

The elastic modulus indicates the material stiffness in tensile.

The tensile strength is the pulling force required to break the material.

The strain at break is the length increase of the material when stretched until failure.

The hardness indicates the resistance of the material to compression.

The impact resistance is the susceptibility of the material to fracture under stresses applied at high speeds.

The degradation temperature is determind in helium.

- Primary Skin Irritation Study
- •Delayed Dermal Contact Sensitisation Study
- Cytotoxicity Study

